Southeast Alaska Tribal Toxins (SEATT)

Sitka Tribe of Alaska

YAKUTAT TLINGIT TRIBE

Petersburg Indian Association

Klawock **Cooperative** Association

A Partnership to Monitor Harmful Algal Blooms

Organized Village of Kassan

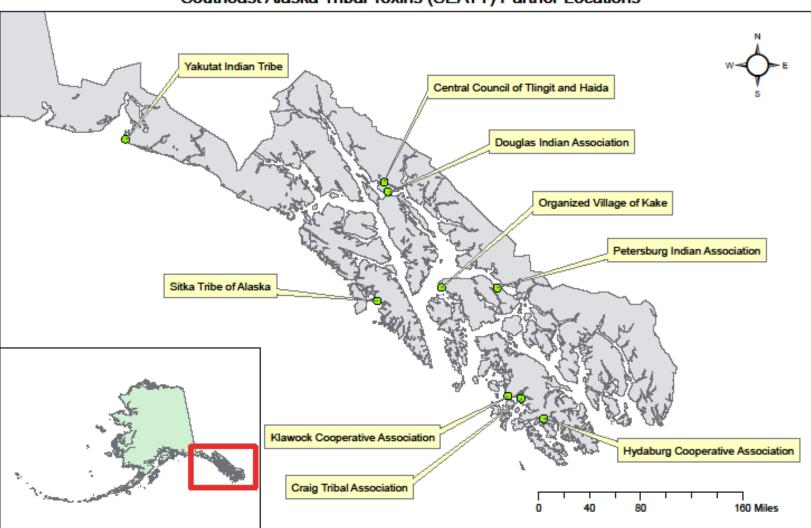
Overview

- How SEATT was formed and the commitment
- Background on Harmful Algal Blooms (HABs) and importance of subsistence
 - harvest
- Toxins, their effects, and distribution
- Regulatory authority
- SEATT monitoring and the benefits
- Biotoxin Lab
- Funding

WHY A PARTNERSHIP?

A **Common Concern** about subsistence clam resources

→No assistance from AK state agencies


STA reached out to SE Tribes

FY 15 EPA IGAP funds for baseline phytoplankton

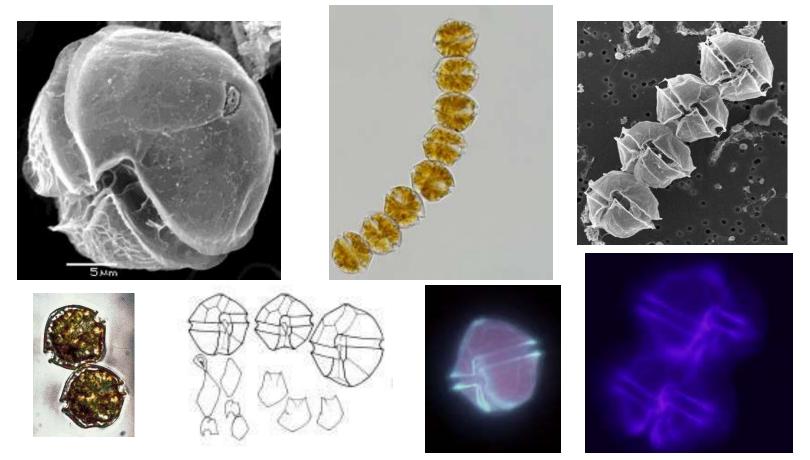
Create an early warning system

Southeast Alaska Tribal Toxins (SEATT) Partner Locations

Traditions and Culture

- Subsistence user groups play toxin roulette when harvesting bivalves in Alaska.
- Coastal Alaskan Native populations are 12 times more likely to be affected by PSP than the Caucasian community because of the greater use of subsistence foods (Gessner and Schloss, 1996).

The Clam Diggers. REPRODUCED FROM THE COLLECTIONS OF THE LIBRARY OF CONURESS

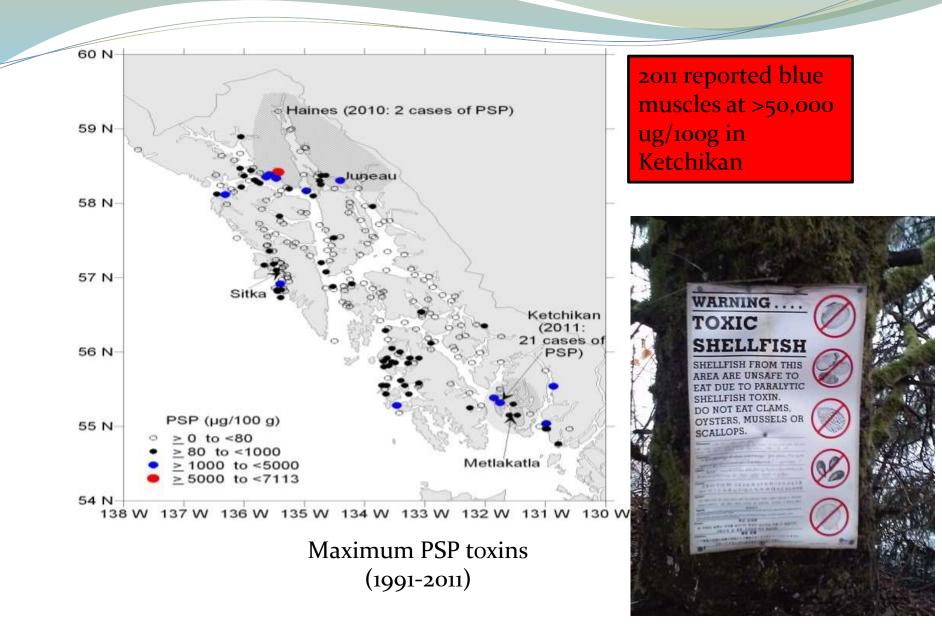

Background on HABs and the increase due to climate change.

- PSP was first acknowledged as an environmental problem in 1799 when the crew of Alexander Baranof from the Russian American Trading Company ingested blue mussels containing high levels of PSP in southeast Alaska (Fortuine 1975).
- Paralytic shellfish poisoning (**PSP**) is caused by the saxatoxins released by *Alexandrium catanella*
- Amnesic shellfish poisoning (ASP) is caused by domoic acid released by *Pseudo-nitzchia*
- With rise in sea water temps due to climate change, HAB species will be more prevalent throughout the year.

HUMAN HEALTH SYNDROMES – Associated with Phytoplankton

Syndrome	SPECIES AND TOXIN	Symptoms
Amnesic Shellfish Poisoning (ASP)	Pseudo-nitzschia Domoic acid	Permanent short term memory loss
Ciguatera Fish Poisoning (CFP)	Gambierdiscus toxicus Ciguatoxin & Maitotoxin	Temperature Sensation Reversal
Diarrhetic Shellfish Poisoning (DSP)	Dinophysis Okadaic acid	Diarrhea Nausea Vomiting
Neurotoxic Shellfish Poisoning (NSP)	Karenia brevis Brevetoxin	Gastrointestinal and Neurological Problems
Paralytic Shellfish Poisoning (PSP)	Alexandrium Saxitoxin	Loss of motor control

Alaskan Alexandrium spp.



The dinoflagellate *Alexandrium catanella* (formerly *Gonyaulax catanella/catenatum*) produces saxitoxin, a highly potent neurotoxin, which, if consumed, causes paralytic shellfish poisoning (PSP).

Comparative Lethality of Selected Toxins & Chemical Agents in Laboratory Mice

	AGENT	LD₅₀ (µg/kg)	MOLECULAR WEIGHT	SOURCE
	Botulinum toxin	0.001	150,000	Bacterium
	Shiga toxin	0.002	55,000	Bacterium
	Tetanus toxin	0.002	150,000	Bacterium
	Abrin	0.04	65,000	Plant (Rosary Pea)
	Diphtheria toxin	0.10	62,000	Bacterium
#5	Maitotoxin	0.10	3,400	Gambierdiscus
#7	Palytoxin	0.15	2,700	Ostreopsis
#8	Ciguatoxin	0.40	1,000	Gambierdiscus
	Textilotoxin	0.60	80,000	Elapid Snake
	C. perfringens toxins	0.1 - 5.0	35-40,000	Bacterium
	Batrachotoxin	2.0	539	Arrow-Poison Frog
	Ricin	3.0	64,000	Plant (Castor Bean)
	alpha-Conotoxin	5.0	1,500	Cone Snail
	Taipoxin	5.0	46,000	Elapid Snake
	Tetrodotoxin	8.0	319	Puffer Fish
	alpha-Tityustoxin	9.0	8,000	Scorpion
#17	Saxitoxin	10.0 (Inhal 2.0)	299	Alexandrium & Gymnodinium
	VX	15.0	267	Chemical Agent
	SEB (Rhesus/Aerosol)	27.0 (ED ₅₀ ~pg)	28,494	Bacterium
	Anatoxin-A(s)	50.0	500	Blue-Green Algae
	Microcystin	50.0	994	Blue-Green Algae
	Soman (GD)	64.0	182	Chemical Agent
	Sarin (GB)	100.0	140	Chemical Agent
	Aconitine	100.0	647	Plant (Monkshood)
	Brevetoxin	180.0	1,000	Karenia brevis

Who regulates for PSP and toxins in Alaska?

 Alaska Department of Environmental Conservation follows FDA regulations for all commercially harvested shellfish in Alaska under the National Shellfish Sanitation Program

• 80 ug of toxin/ 100g of shellfish with mouse bioassay

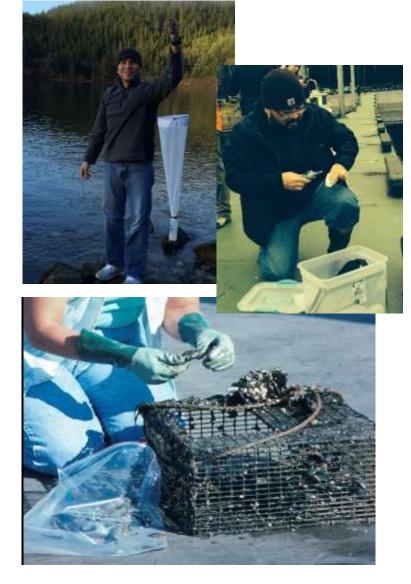
What about subsistence users?

- Alaska has NO SUBSISTENCE OR RECREATIONAL regulatory testing.
- ADEC will not certify any intertidal harvest for subsistence use.

What does monitoring look like?

Net tow and WQ field sample

Microscopy for ID and cell count /abundance



Filter sample in lab and test for toxins

Shellfish collection, shipped to Sitka

Monitoring Components

- Collect & process seawater samples weekly
- Record oceanic parameters
- Identify presence of HAB species
- Enumerate target species
- Describe phytoplankton species diversity
- Measure toxins (cellular)
- Ship shellfish samples to Sitka Sentinel mussel cages (2016)

Equipment and Training

Equipment

- Digital Microscope with Camera
- Refractometer and Thermometer
- Phytoplankton Net
- Filtering apparatus
- Identification tools

Training

- Workshops in Sitka
- •Developing Manuals/Training DVD (UAS)
- Site Visits

Quarterly Newsletters and Updates to SEATOR.org

Cell counts & imaging training

SEATT DATA ENTRY SHEET

Sample Location:

Collection Date and Time:

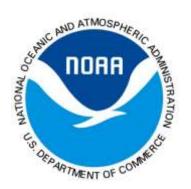
Field Data Collected by:

Data Entered by:

Comments:

Cell Abundance

Genus	Species (if known)	Net Tow Relative Abundance N, P,C, B (none, present,common, bloom)
Pseudo-nitzschia		
Alexandrium		
Dinophysis		
Diatoms:		
Aterionellopsis		
Bacteriastrum		
Bacterosira		
Chaetoceros		
Corethron		
Coscinodiscus		
Cylindrotheca		
Dactyliosolen		
Ditylum		
Eucampia		
Fragilariopsis		
Guinardia		
Hemiaulus		
Leptocylindrus		
Licmophora		


Weather and Water				
sunny partly cloudy	mostly cloudy	cloudy	rain	
Wind (none, light, moderate, strong):				
Tide (incoming, outgoing, high, low):				
Air Temperature (°C):				
Water Temperature	(°C):	Salinity (pp	m):	

Pseudo-nitzchia spp. size % Small % Large classification

Genus	Species	Abundance (N, P,C, B)	
Diatoms (cont):			
Navicula			
Nitzschia			
Pleurosigma			
Rhizosolenia			
Skeletonema			
Stephanopyxsis			
Striatella			
Thalassionema			
Thalassiosira			
Dinoflagellates:			
Ceratium			
Cochlodinium			
Heterocapsa			
Noctiluca			
Prorocentrum			
Protoperidinium			
Haptophytes:			

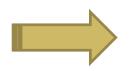

Where does all the data go?

- SoundToxin Database and Phytoplankton Monitoring Network (NOAA)
 - National database for all monitoring groups
 - Used by researchers, shellfish growers, and resource managers for early warning system

Other Partnerships doing HAB monitoring

Benefits for REAL Time monitoring

- EARLY WARNING system
- Develop forecasting tools
- Provide outreach to Tribal Citizens about the potential for health risk related to subsistence harvest.
- Coordinate with local and state health departments
- Provide the SEATT partners with a unified baseline data set.



Credibility

Ketchikan noctiluca bloom 2009

STA Toxin Analysis Lab

- Lab can be used to conduct regulatory sampling for SEATT partners for PSP and other toxins using RBA techniques
- Ability for Tribes to establish their own subsistence shellfish management plans based on sampling data
- Possibility to incorporate other needs that Tribes may have: OA, traditional foods, etc.

Icing on the cake

Looking to the Future

- Funding
 - EPA IGAP funds (\$30K/SEATT partner/year: \$270K/year)
 - STA and CCTHIA EPA unmet needs for technical training and workshops (\$150/year)
 - STA-EPA unmet needs for cellular toxin analysis (\$75K OCT 2014)
 - STA -BIA funding for technical standard operating procedure manual (\$48K NOV, 2014)
 - STA-ANA Environmental Regulatory Enhancement for FDA certified regulatory lab(\$600K 2015)

TRAINING WORKSHOPS IN SITKA

• May 11-15 2015, November 2015

- Current SEATT partners are funded for travel, lodging, per diem.
- Possibility for additional interested Tribes to attend.
- NOAA, WDOH, UAS
 - Dr. Vera Trainer
 - Dr. Steve Morton
 - Kate Sullivan
 - Jerry Borchert

Questions or Comments?

Chris Whitehead Environmental Program Manager Sitka Tribe of Alaska Resource Protection Department 9º7-747-7395 chris.whitehead@sitkatribe-nsn.gov